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Abstract. Given a set X and subsets X1, . . . ,  Xm, we consider the problem of finding a graph G 
with vertex set X and the minimum number of edges such that for i = 1, . . . ,  ra, the subgraph Gi 
induced by Xi is connected. Suppose that for any a points x l, . . . ,  x,~ E X, there are at most flXi's 
containing the set { x l , . . . ,  x,~ }. In the paper, we show that the problem is polynomial-time solvable 
for (c~ ~ 2,3 ~< 2) andis NP-hard for (or >/3,3 = 1),(~ = 1,3 ) 6), and (a/> 2,3/> 3). 
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1. In troduct ion  

Given a set X and subsets X 1 , . . .  , Xra, we consider the problem of  finding a graph 
G with vertex set X and the minimum number of  edges such that for i = 1 , . . . ,  m,  
the subgraph Gi induced by X i  is connected. We will refer this problem as the 
SID (subset interconnection designs). This combinatorial optimization problem has 
many applications in real world [1,2,5]. Let  us mention one of  them as follows. 

A vaccum system contains many valves. T h e  function of  valves is to give 
different connections for different work at the different stage. Now, we use a vertex 
to represent a part separated by valves and an edge to represent a valve. Then 
the SID corresponds to the following: Given m connection requirements, design 
a vaccum system with min imum number of  valves. The importance of  decreasing 
the number  of  valves in the vaccum system is not only on saving money but also 
on increasing the degree of  vaccum. 

The SID is NP-hard. Du [3] gave a sufficient optimality condition and indicated 
that the condition is necessary for m = 2. Tang [11] showed that the condition is 
also necessary for rn = 3, but is not necessary for m >/4. In this paper, we consider 
the restriction denoted by ( a ,  r )  as follows: For any a points x 1 , . . . ,  x~ C X ,  there 
are at m os t / 3Xi ' s  containing the set { X l , . . . ,  x~} where a and/3 are two given 
natural numbers. 
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Suppose c~' /> a and fl' /> /3. Clearly, (~,/3) implies (~' ,fl ' ) ,  then it is 
polynomial-time solvable for (c~,/3) and if the problem is NP-hard for (a,/3), 
then it is NP-hard for (c~ ~,/3~). We will show that the problem is polynomial-time 
solvable for (c~ ~< 2 and/3 ~< 2) and is NP-hard for (c~)  3 and/3 = 1), (a = 1 and 
/3 ) 6), and (c~)  2andf l  ) 3). 

A graph G with vertex X is called a feasible graph for (X1, X2 , . . . ,  X ~ )  if 
for any i = 1 ,2 , . . . ,  ra, the subgraph Gi induced by Xi is connected. A feasible 
graph is minimum if G is an optimal solution for the SID. For a graph G, we denote 
by V(G) the vertex set of G, by E(G) the edge set of G, and by Ilall the number 
of edges in G. For a set Y, we denote by ]Y] the number of elements in Y. For 
example, IE(G)I = IIa[I. Let G = (V,E)and G' = (V',E'). Then the union, 
the intersection, and the difference of graphs G and G' are defined by G U G ~ = 
(VUV', EUE"), GNG' = (VNV', ENE'), and G\G ~ = (V, E \U) ,  respectively. 
The symmetric difference of G and G ~ is defined by G | G~'(G\G ~) U (G'\G). 
Before presenting our results, we make four conventions: 
(1) We assume X = Ui=IX,, without loss of generality, since every minimum 

feasible graph has no edge incident to a point in X \  Ui~ 1 Xi. 
(2) We assume [Xil /> 2 for all i since Xi with IXil = 1 can be deleted. 
(3) We assume that every feasible graph G satisfies G = U~=lGi since an edge 

not in u~=lGi can be deleted without changing the feasibility. 
(4) All cycles and paths we talk about in this paper are simple. 

2. Preliminary 

It was proved in [3] that every graph satisfying the following condition is a mini- 
mum feasible graph. 

(*) For any i, j = 1, 2, . . . ,  ra, the subgraph Gij induced by Xi n Xj is a tree. 

For (c~ = 1, fl = 2), a graph satisfying the condition (,)  can be constructed in the 
following way: For every pair i , j  E {1 ,2 , . . . , r a}  with i r j and Xi N Xj r O, 
connect all points in Xi N Xj into a tree. Let G t denote the resulting graph. Since 

= 1 and/3 = 2, for different pairs {i , j}  7 ~ {i ' ,y},  (XINXj)N(Xi ,  NXj,) = ~. 
Thus, for all i, the graph G} induced by Xi from G ~ is a forest. Connecting each 
forest G} into a tree, we obtain a graph G satisfying the condition (,). 

For (c~ = 2, fl = 2), it is not so easy to find a minimum feasible graph. In the 
next section, we will present a polynomial-time algorithm to compute it. Before 
doing so, we prove some general properties in the rest of this section. 

Let K(i) be the number of (connected) components of a graph with vertex set 
Xi obtained by joining all vertices in Xi N Xj into a tree for all j = 1 , . . . ,  m 
and j r i. Let Xi l , . . . ,  XiK(i) denote the vertex sets of these K(i) components. 
Clearly, Xi l , . . . ,  XiK(i) form a disjoint partition of Xi. Let T be a set of K(i) - 1 
edges which interconnect the K(i) components into a connected graph. 
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L E M M A  2.1. If K(i)  >1 2, then any disjoint union of T and a minimum feasi- 
ble graph for (X1, �9 �9 �9 X i -  1, Xil ,  �9 �9 �9 XiK ( i), Xi + l, . . . , Xm) must be a minimum 
feasible graph for (X1, . . . ,  X~) .  

Proof Without loss of generality, we assume i = ra since, otherwise, we can 
rearrange the indices. Let G be a minimum feasible graph for ( X I , . . . ,  X ~ ) .  Note 
that 

IIGII = II U?=~ 1 aj l l  + l i a r \  U?=~ 1 aJll 

II ---- U j=  1 Gill + IlC~\ u}~_-51 (Gj n C~)[]. 

Suppose that U~a_~l(Gj N Gin) has k* components. By the minimality of G, 

G~ \  U~_~ 1 (Gj A G~) contains exactly k* - 1 edges which interconnect those k* 

components. Note that the vertex set of each component of U~=~ 1 (Gj N Gin) is a 

subset Of Xmk for some k = 1 , . . . ,  K(m). Thus, we can use k* - 1 edges intercon- 
necting the k* components in the following way: First, for k = 1 , . . . ,  K(ra), we 
join the components with vertex set in Xrak together. Then we use T to interconnect 
the resulting K ( r a )  components. Let G ~ be the obtained graph. Clearly, G ~ is also 
a min imum feasible graph. In addition, G ~ is a disjoint union of  T and a minimum 
feasible graph for (X1 , . .  �9 X ~ _  1, Xm 1,..., XmK(m)). Since every disjoint union 
of T and a min imum feasible graph for ( X 1 , . . .  , Xm_l, Xml , . . .  , XmK(m)) is a 
feasible graph for ( X 1 , . . . ,  X ~ )  with the number of edges as G ~ has, it must also 
be a min imum feasible graph for ( X 1 , . . .  , Xm). [] 

Denote I(x)  = {ilx �9 X d  for every vertex x �9 X and I(u) = I ( x ) n  I(y) for 
every edge u with endpoints x and y. 

By Lemma 2.1, we may assume that K(i) = 1 for all i. With this assumption, 
the SID has the following property. 

L E M M A  2.2. If K(i) = 1 for all i = 1 , . . . ,  ra, then there exists a minimum 
feasible graph G such that II(u)[ >>, 2for every edge u of G. 

Proof Suppose G is a minimum feasible graph and u is an edge of G such that 
[I(u) l = 1. Without loss of generality, assume [(u) = {m}. Clearly, u belongs to 
G~\  t_J~ 1 (Gj ~ Gm). Deleting u breaks G ~  into two parts. Since K(ra) = 1, 
we can connect the two parts into one by an edge v with I/(v)l ) 2. [] 

3. (c~ = 2 , / 3 = 2 )  

We first consider the restriction (a  = 2,/3 = 2), i.e., for any two distinct points x 
and y in X,  ]I(x) n / (y)[  ~ 2. We also assume IK(/)[ = 1 for all i. By Lemma 
2.2, there exists a min imum feasible graph for X1, . . . ,  Xm) such that every edge 
u contains two indices, i.e., [I(u)] = 2. 

Let If* be a graph with vertex set X and all edges which contains two indices. 
Then If* has a subgraph which is a minimum feasible graph for ( X 1 , . . . ,  X ~ ) .  To 
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find it, let us first study a graph H(G) constructed for a given feasible graph G in 
the following way: 

(1) For each edge u E E(KS \G  ), choose a cycle in Gi t_J u containing u. Then 
choose a set of cycles in Gi together with the already chosen cycles to form a 
maximal independent set Ci of cycles in K S, where K S is the subgraph of K*, 
induced by Xi. Here, a set of cycles is said to be independent if they are linear 
independent in a linear vector space generated by them. (See [9] for detail.) Each 
chosen cycle Q with the index i together forms a vertex in H(G), denoted by (Q, i}. 
Note that for i r j ,  (Q, i) and (Q, j )  denote different vertices. The vertex subset of 
H ( G ) is exactly the collection of such pairs, i.e., It(G) = { ( Q , i ) l Q E C i , }. 

(2) H(G) has an edge between (Q, i) and (Q', i') if and only if i r i' and Q 
and Q' have at least one edge in common. 

Assume v E E(K*\G)  and I(v) = {i, i'}. Then H(G) has two vertices (Q, i) 
and (Q', i') such that both Q and Q~ contain edge v. Hence, H(G) has an edge 
between (Q,i) and (Q',i'). We denote this edge by re(v). Note that edge m(v) 
may not be uniquely determined. In the case of existence of many choices, we 
choose one arbitrarily to be re(v). Now, let M(G)  = {ra(v)lv E E(K*\G)  }. 

LEMMA 3.1. M(G) is a matching in graph H(G). 
Proof Let u and u be two distinct edges in K*\G. Let (Q, i) and (0 ,  bari) 

be endpoints of m(u) and re(g), respectively. Since ~ is not in G and Q\u is in 
G, Q does not contain ~. However, Q contains ~. Therefore, Q and Q are different. 
Hence, (Q,i) r ((~,~). This means that any two edges in M cannot have an 
endpoint in common. Thus, M is a matching in H. [] 

LEMMA 3.2. If a feasible graph G is not minimum, then M ( G) is not the maximum 
matching of II ( G). 

Proof Since G is not minimum, there exists a feasible graph G* such that 
II G*II < II G[I. We will find a matching M* in H (G) such that I M*I = [I K* \ G*I[ > 
IIK*\GII = IM(G)[. To do so, consider an edge u C E(KS\Gi  ). Let x and y be 
two endpoints of u. Then both x and y belong to X~. Since G is a feasible graph, 
G.i has a path connecting x and y. This path together with u forms a cycle Q~ in 
Gi t3 u containing u. 

Clearly, the set of cycles Q~ for u E KS\Gi is independent. In fact, if we write 
each Q ~ into a 0-1 raw vector such that each component of the vector corresponding 
to an edge of K S and an edge is in Qu if and only if the corresponding component 
equals 1, then all columns corresponding to edges in KS\G* form the identity 
matrix of order ]KS\G* I . From this fact, we can also see that in Ci, the number of 

K*\G* is at least IIKS\G*II. In fact, all Q~'s can cycles which contain edges in i . -  
be written as linear combinations of cycles in Ci, so, if we put all cycles in Ci as 
raw vectors into a matrix, then all columns corresponding to edges in KS\G* form 
a submatrix of rank IIKS\G*[I and hence this submatrix has at least [IKS\G*II 
nonzero rows. 
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Similarly, for each subset S of edges in K~\G*, the number of cycles in Ci, 
containing some edges in S, is at least I SI. By KOnig-Hall's theorem, we can find 
11 KS \ G*[I distinct cycles Qi,~ from Ci such that Qi,~ contains edge u in KS \G*. 

Now, for each edge u in K*\G*, let I(u) = {i, i'}. Then, we have two cycles 
Qi,~ and Qi,,~ in Ci, both containing u. By the definition of H(G), H(G) has 
an edge between (Qi,~, i) and (Qi,,~, i'). This edge is denoted by ra*(u). Define 
m* = { m* (u)1 u E E (K* \ G ) }. We claim that M* is a matching in H (G). 

To prove the claim, let us consider two distinct edges u and g in K*\G*. 
Suppose that (Qi,~, i) and (QL~, ~) are endpoints of u and ~, respectively. If i r 3, 
then it is clear that (Qi,~, i) r (Q?,~,~). If i = 3, then we can see from the above 
choice that Qi,~ r Qi,~ since u r ~. Therefore, (Qi,~, i) r (Q~,~, i). This means 
that any two edges in M* have no endpoint in common, that is, M* is a matching. 
Clearly, IM*[ = ]]K*\G*[]. Thus, M(G) is not maximum. [] 

By Lemma 3.2, if a feasible graph G is not minimum, then there exists a matching 
M* in H(G) such that ]M*[ > [M(G)]. The symmetric difference M(G) �9 M* 
is a disjoint union of paths and cycles. Since [M(G)I < [M*I, M(G) | M* has 
a path P with more edges in M*. Clearly, this path P must satisfy the following 
conditions: 

(A1) The path is alternating for M(G), i.e., the edges in the path are alternatively 
in H(G)\M(G) and M(G). Thus, it has even number of vertices. We may write 
it as { ( Q 1 ,  i l ) , - - - ,  (Qzk,  izk)} .  

(A2) (Q1, il) and (Qzk, iZk) are not covered by M(G). (Therefore, Q1 and Qzk 
are in G. In fact, a vertex (Q, i) of H(G) is not covered by M(G) if and only if Q 
is in Gi). 

(A3) G has k distinct edges Vl , . . . ,  vk such that vj E E(Qzj_I N Qzj) for 
j = 1 , . . . , k .  

Such a path {(Q1, i l ) , . . . ,  (Q2k, i2k)} in H(G) will be called an augmenting 
path in tt(G). 

LEMMA 3.3. A feasible graph G is a minimum feasible graph if and only if II ( G) 
has no augmenting path. 

Proof Suppose that G is not a minimum feasible graph. By Lemma 3.2 and the 
discussion after Lemma 3.2, It(G) has an augmenting path. 

Conversely, suppose that H (G) has an augmenting path { (Q 1, i 1), �9 �9 �9 (Q 2h, i2k) ) 
we prove by induction on k that G is not a minimum feasible graph. For k = 1, 
since Q1 and Q2 are in G, G\vl is a feasible graph where Vl C E(Q1 N Q2). Thus, 
G is not minimum. For k > 1, assume that f o r j  = 1 , . . . ,  k - 1, m(uj) is the edge 
between vertices (Qzj, izj) and ( Q 2 j + I ,  iZ j+ l ) .  Denote G' = (G\v l )  tO Ul Since 
G tO ul contains cycles Q1 and Q2 and l(Vl) = {il,  il), G ~ is feasible. We will find 
a sequence of cycles Q~,..., Q~zk,(U < k) such that there exists an even integer 
J*, 2 ~< j* ~< 2k - 2, satisfying the following conditions. 
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(a) For any 1 = 1 , . . . ,  2k', Q~ contains vk(j,+O/2 j . For any I = 2 , . . . ,  2k'-  1, Q'l 
contains u [(3,+/)/2J and Q~\u L(j,+0/2 j is in G ~. (Hence, 2U ~< 2 k - j *  ~< 2 k - 2 . )  

(b) Q~ and Q' , ' = 2k areinG~andQlUu[(J*+l)/2] i s i nG~f~  2 , . . . , 2 U -  1. 
Once the sequence of cycles is found, we construct the graph H(G ~) containing 

(Q], i j .+l ) ,  . . . ,  (Q2k,, ij*+2k,) as vertices. Then those vertices form an augment- 
ing path in H(G). By the induction hypothesis, the graph G ~ is not a minimum 
feasible graph and neither is G since [[G[I = []G'[I. Next, we describe how to 
compute the sequence of cycles Q~ , . . . ,  Qzk,. 
begin 

j* := 2 ; j  := 3;l  := 1; 
found:=false; 
while (found =false) do begin 

Case 1: Qj does not contain Vl {Removal vl does not destroy Qj. We keep 
Qj.} 

begin 

Q~ := Qj;I := l +  1 ; j  : = j  + 1; 

end; 
Case 2: Qj contains vl{Qj is destroyed by removing vl. We need to find a 

new cycle replacing Qj. Note that ij = il or i2. Thus, either Qj �9 Q1 or 
Qj | Q2 contains a cycle which contains vii~2 ] . This cycle is put into the 
sequence and denoted by Q~ .} 

Subease 2.1: j < 2k and Q~ contains u[j/2]{Q~ is not contained in G' So, 
Q~ cannot end the sequence.} 

begin 
QI := Q~; l ' l+  1; j  : = j +  1; 

end 
Subcase 2.2: j = 2k or Q~ does not contain uU/2j when j < 2k {In either 

situation, Q~ is contained in G I. When j is even, Q~ will end the required 
sequence. When j is odd, it means taht the previous search fails. However, 
in this situation, we must have j < 2k so that Q~ contains V ( j + I ) / 2 .  Thus, 
we can start over with Q~ again.} 

begin 
i f j  is even then set Qt := Q~ and found := truth; 
i f j  is odd then set j*; + j  - 1, l := 1, Q] := Q~ and j := j + 1; 

end 
end {while loop}; 

end 
Clearly, the above algorithm terminates when the required sequence is found. 

This completes the proof of the lemma. [] 

From the proof of lemma 3.3, we can also conclude that when an augmenting path 
{(Q1, il),..., (Q2h, izk)} exists, we can improve the current feasible graph G by 
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deleting all edges vj's and adding all edges uj's where vj's are in the definition of 
the augmenting path and m(uj) 's  are edges in the augmenting path. To see this, let 
us consider three types of paths in H(G) :  

1. the augmenting path (Q1, il),. . . ,  (Qzk, iZk)), 
2. the alternating path { (Q 1, i 1 )~ . �9 �9 ~ (Q 2k- 11 i2k- 1 ) ) satisfying condition (A3) 

and that Q 1 is in G, 

3. the alternating path {(Q2, i2 ) , . . . ,  (Q2k-1, izk-1)}. 

For any type of path, we have uj's and vj's related to the path like before. 

LEMMA 3.4. For any type of path, we can delete all vj's and add all uj's in the 
path without changing feasibility. 

Proof This lemma is proved by induction on the length of the path. For the path 
length equal to one or two, we can verify it easily. For the path length larger than 
two, let us first assume that the path is an augmenting path. We look at the proof 
of Lemma 3.3 again. Note that G' = (G\v l )  U Ul and H(G') will be constructed 
by using all cycles obtained in the search. Now, in Subcase 2.2, if j is even, than 
an augmenting path is found; i f j  is odd, then an alternating path of even length is 
found and this path is of type 2. Moreover, if j is odd, then an alternating path of 
even length is found and this path is of type 2. Moreover, if j is even and j < 2k, 
then either Qj | Q I or Qj | Q2 contains a cycle Q~* which contains Uj/2, then 
we can start a new search with Q~*. This search will end up on a path of type 2 or 
type 3. In this way, we can obtain a collection of disjoint paths of the three types 
such that all vj f o r j  = 2 , . . . ,  k and all u / f o r j  = 2 , . . . , k -  1 will appear in paths 
of the collection and play a similar role as vj's and uj 's  in the original augmenting 
path. By the induction hypothesis, we can replace all vj's by all uj 's  preserving the 
feasibility. Similarly, we can deal with the path of type 2 or type 3. [] 

Now, we face the problem of how to find an augmenting path in H(G). Since an 
alternating path respect to M(G) in H(G) may be non-augmenting, H(G) can 
also contain alternating path for an optimal G. Should we enumerate all alternating 
paths satisfying condition (A2) and check if one of them satisfies condition (A3)? 
It may be a way. However, we would like to provide a better way. 

Besides H(G), we construct another graph B(G) = (V1 O V2, E1 U E 2 U E3) 
where 

vi = V(H(G)) ,  

V2 -- {(v, i), (v, i')[[(v) = {i, i'} and 3(Q, i), (Q', i') 
E VI,V E ~ ( Q  n Qt  n G ) } ,  

E 1 =- M ( G ) ,  

E2 = {((v, i), (v, i'))](v, i}, (v, i'} E V2 and [(v) = {i, i'}}, 

E3 = {((Q, i), (v, i))](Q, i) E V1, (v, i) E V2 and Q contains v}. 
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Clearly, E1 tO E2 is a matching in B(G) and a more important fact is stated in 
the next lemma. 

LEMMA 3.5. H ( G) has an augmenting path with respect to M ( G) if and only if 
B(G) has an augmenting path with respect to E1 tO E2. 

Proof Suppose that { (Q 1, i l ) , . . . ,  (Q 2 k, izk) ) is an augmenting path i n / / ( G ) .  
By condition (2), Q 1 and Q2h are in G. Thus, (Q1, il) and (Qzk, izk) are not covered 
by M(G) and hence not covered by E1 U E2, i.e., they are non-saturated. Let 
Vl, . . . ,  vk be edges in condition (3) of the definition of the augmenting path. Then 
it is easy to verify that {(Q1, il),  @1, i1), (Vl, i2), (02, i2), (Q3, i3), (v2, i3 ) , . . . ,  
(Q2k, i2k}} is an augmenting path with respect to E1 U Ez. 

Conversely, consider an augmenting path P with respect to B(G). Since every 
vertex in V2 is saturated, the two endpoints of P belong to V1 and can be denotes 
as (Q, i} and (Q', i'). Note that (Q, i) is saturated in H(G) with respect to M(G) 
if and only if it is saturated in B(G) with respect to E1 t3 E2. Thus, (Q, i) is 
not saturated in H(G) with respect to M(G). It follows that Q is in G. Similar- 
ly, Q' is in G. Next, noting the form of edges in E3, it is easy to see that the 
j th  edge in path P is in E3 if j is odd, is in E2 if j - 2 (mod 4), and is in 
E1 if j - 0 (rood 4). It follows that P has an even number of edges in E3. Let 
((01, il), (Vl, il)),  ((Vl, i2), (Q2, i2)), ((03, i3}, (v2, i3 ) , . . . ,  (vk, i2k), (Q2k, i2k)) 
be the 2k edges of P in E3 where Q1 = Q and Q2k = Q'. Since II(vj) I = 2 
for all j and an alternating path always simple, Vl , . . . ,  vk are distinct. Therefore, 
{(Q1, il), �9 �9 (Q2h, izk}} is an augmenting path in H(G). [] 

THEOREM 3.6. When a =/3 = 2, the minimum feasible graph for (X1, . . . ,  X~) 
can be computed in O(IX] 6) time. 

Proof Note that the minimum feasible graph can be computed in the following 
way: Initially, using Lemma 2.1 reduces the problem to one satisfying the condition 
that for every i = 1, . . . ,m ,k ( i )  -- 1 and then set G : 'K  *. At each iteration, 
construct graph B(G) and look for an alternating path with respect to E1 to E2 with 
two non-saturated endpoints. If such a path does exist, then G is minimum. If such 
a path exists, then we improve the feasible graph by deleting all vj's and adding all 
uj's, where ((vj, izj-1), (vj, i2j)) and ra(uj) are edges in the alternating path. 

To estimate the computing time, we first note that for any graph R, the number 
of independent cycles equals 1 + IE(R)] - IV(R)I. Thus, K* has at most I]K~'II 
independent cycles. Since ct = r = 2, each edge of K* appears in at most two k~'s. 
Hence, ]Vll ~< ~im_-i IItCSII 211K*II. Therefore, ([V(B(G))I = IVll + IV21 = 
o(Ix l  2) + o( ISl  2) = o(Ix12). Since each (simple) cycle in 1(* contains at 
most ISl edges, LE(B(C))I = o ( I s l3 ) .  By an algorithm given by Micali and 
Vazirani in [10], we can compute the alternating path in B(G) in O(ISl  4) time. 
Moreover, it is easy to construct B (G) in 0 ( IX 14 ) time. Therefore, at each iteration, 
the computation takes O(IXI 4) time. Since there are at most IIK II = o ( I s l  2) 
iterations, total running time after the initial step is 0 ([XI6). Now, we examine the 
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initial step. Since o~ = /3 = 2, I r(x)l < 2121 for any x E X. Thus, m ~< 21212, 
This implies that the initial step can also be computed within O ([215) time. [] 

We end this section by presenting an example. Let X = {a,b, c, d ,e} ,X1 = 
= = = {a,c},25 = = 

{a ,b} ,X7  = {a,e},  and Xs  = {b,e}. It is easy to verify that K(1)  . . . . .  
K(8)  = 1. The graph K* is as shown in Figure 1. 

At the first iteration, we have G = K* and B(G) as shown in Figure 1. There 
exist three augmenting paths. We consider path {(bce, 2), ((c, e), 2), ((c, e), 3), 
(cde, 3)} and obtain G' by deleting (c, e). The graph B(G')  is constructed as 
shown in Figure 1. There exists a unique alternating path in B(Gt).  Deleting edges 
(b, c) and (c, d) and adding edge (c, e), we obtain G t'. Finally, constructing B(G"),  
we find that B(G")  = ~ and hence G" is a minimum feasible graph. 

4. (o~ /> 3,/3=1), (ct=l,/3 /> 6), and (oL /> 2,/3 >/3) 

We show that theSID isNP-hard for (c~ >/ 3,/3 = 1),(c~ = 1,/3 >/ 6 ) , and  
(~/> 2,/3/> 3). To do so, we consider a special case of the set packing problem as 
follows: 

Set Packing 
Instance: Collection F of finite sets, a positive integer K ~ I rl. 
Question: Does F contain at least K mutually disjoint sets? 
In the special case we consider, the instance is required to satisfy the following 
conditions: 

(C1) For any A E r ,  IAI 3. 
(c2) For any different A, B E F, ]An BI ~< 1. 
(C3) For any distinct A, B, C E F, IA n B n CI = o. 

This special case is denoted by 3-1-SP in [6], which was first proved to be NP- 
complete in [8] with name vertex packing on cubic graphs. By (C3), each element 
is in at most two sets in r .  Since an element in only one set can be deleted without 
loss of generality, we can furthermore assume the following. 

(C3') Every element is in exactly two sets in F. 
The decision version of the SID is as follows. 
The Decision Version of the SID 
Instance: ra sets X 1 , . . . ,  X m and a positive integer K '. 
Question: Is there a feasible graph G for (X1 , . . . ,  X ~ )  such that [IGII ~< K'?  

THEOREM 4.1. The decision version of  the SID is NP-complete for ( ~ >1 3,/3 = 
1), (oz = 1, /3 >>. 6 ), and ( c~ >>. 2, /3 >>. 3 ). 

Proof. Clearly, the decision version of the SID belongs to NP. We reduce 3-1- 
SP to the decision version of SID. Consider an instance of 3-1-SP consists of a 
collection F of sets and a positive number K. Denote M = UA~FA. Without loss 
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b 

K �9 

d 

b 

G ~ 

d 

e 

<acd, 1> <(b,c), 1> 

<(b,c), 2> 

<abc, 1> <(c,d), 1> 

<bce, 2> <(c,d), 3> 

<(c,e), 2> 

<cde, 3> <(c,e), 3> 

B(K*) 

<acd, 1> <(b,c), 1> 

<abc, 1> <(b,c), 2> 

<bce, 2> <(c,d), 1> 

<cde, 3> <(c,d), 3> 

B(G') 

G vl 

Fig. 1. An example. 

of  generality, assume that all sets in I' consists of  natural numbers in { 1 , . . . ,  [M I}. 
We first define an instance of the decision version of SID as follows. 

(1) For each A E F, we introduce two points y A and YA and for each i E M,  
we introduce a point zi. Then for each i E M,  define Xi = { Z A, yA[i E A} U { zi }. 
Note that each i E M is in exactly two sets A(1) and A(2) in F. Now, for each 

i E M,  we also define Xlml+3i = {zi, ZA(1)}, Xlml+3i+l = {YA(1), YA(2)}~ and 

XIMI+3i+2 = {zi, XA(2)}. 
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Z . 
1 

YA(I) 

Fig. 2. Hi is a cycle. 

x A(2) 

Y A(2) 

(2) Set m = 4[MI and K '  = Irl + 3]MI - / s ' .  
Now, we claim that the collection r has at least K mutually disjoint sets if 

and only if there exists a feasible graph G for (X1 , . . . ,  X=)  such that IIGll >1 K'. 
To prove this claim, let us first construct a feasible graph H for (X1 , . . . ,  Xm) as 
follows: 

V(H) = {xA,YAI A E F} U {zili C M} and 

E(H) = {(xA,YA)lAEr}U{(zi,  xA(1)),(yAO),yA(2)),(XA(2),zi)liEM}. 

Clearly, H has IF] + 3IM ] edges and for each A E P, I((xA, YA)) = A. 
First, suppose that P has K mutually disjoint sets B ( 1 ) , . . . ,  B(K). This means 

that the index sets of uB(0, . . - ,  UB(K) are mutually disjoint. Moreover, for each 
i C B(j), the subgraph Hi induced by Xi is a cycle having edge uB(j). (See Figure 
2.) Thus, all edges UB(a), �9 . . ,  UB(K) can be deleted preserving the feasibility. This 
gives a feasible graph G with IIGI] ~< K'. 

Conversely, suppose that there exists a feasible graph G for (X1 , . . . ,  X ~ )  such 
that IIG[I ~< I(' .  We first want to show that G can be assumed to be a subgraph of 
H. To see this, we note that the following two facts hold: 

(b) By (C2), H contains all edges with at least two indices. 
(a) For every i = 1, . . . , m , K ( i )  = 1, i.e., Hi is connected. In fact, Hi is a 

cycle for i C M and Hi is an edge for IMI < i ~< m -- 41M I. 
By Lemma 2.2, / /  contains a minimum feasible graph which can be chosen as 
the feasible graph G with IIGll ~< K'. Next, note that G must contain all edges in 
{(zi, XA(I)) ,  (YA(1), YA(2)), (XA(2), zi)l i E M}.  Suppose that all edges in H \ G  are  
(:;CB(1), YB(I)),..., (XB(k"), YB(k")) where K "  = ]]HI] - [IGI] > / E .  We show that 
K" sets B ( 1 ) , . . . ,  B(K") are mutually disjoint. To do this, note that each Hi for 
i C M is a cycle as shown in Figure 2. Thus, Hi\G contains at most one edge 
because Gi is connected. This means that for every i E M, there exists at most one 
B(j) containing i. It follows that B(j) for j = 1 , . . . ,  K" are mutually disjoint. 

Finally, we remark that the instance of the decision version of SID, constructed 
as above, satisfies (a  = 3,/3 = 1), (a  = 1,/3 = 6), and (a  = 2,/3 = 3). In fact, 
we have the following. 

(1) Every Xi has at most three elements. Thus, (a = 3,/3 = 1) is satisfied. 
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(2) By (C1), IA] ~< 3 for every A E F. Thus every XA (or YA) is in at most three 
Xi ' s  for i E M and at most three Xi's for i ~ M.  Moreover, every zi appears in at 
most three Xi ' s  Hence, (c~ = 1,/3 = 6) is satisfied. 

(3) By (C1), every edge (XA, YA) has at most three indices. Moreover, every 
edge in {(zi, XAO)).(YA(1), YA(2)), (XA(2), zi)[i E M }  has exactly two indices and 
every edge not in H has at most one index. Thus, (a  = 2,/3 = 3) is satisfied. [] 

5. Discussion 

We leave an open question on the computational complexity of the SID for (c~ = 
1,3 ~< /3 ~< 5). Tang [11] showed that for ra = 3 the condition ( . )  is necessary 
and sufficient for a feasible graph to be minimum. This implies that ra = 3 the 
minimum feasible graph is polynomial-time computable. From this evidence, we 
believe that the SID is polynomial-time solvable for (a = 1,/3 = 3). However, 
we also believe that the SID is NP-hard for (a = 1,/3 = 4). An application of 
result for (c~ = 2,/3 = 2) is to construct approximation solution for the general 
SID. There are several ways. The first one is to divide the collection of subsets 
X 1 , . . .  , X m  into several small collections satisfying (c~ = 2,/3 = 2), construct 
a minimum feasible graph for each small collection and take the union of  all of 
them. The second one is as follows: When a pair of points appear in more than two 
subsets Xi's,  we stick them together. In this way, we can reduce original collection 
of  subsets to a new one satisfying condition (c~ = 2,/3 -- 2). After a minimum 
feasible graph for the new collection of subsets is found, we break stuck pairs by 
adding some edges. 

It is still an open problem whether the SID has a bounded polynomial-time 
heuristic or not. 
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